
D-Ai3e 738 THE GIST BEHAVIOR EXPLAINER(U) UNIVERSITY OF SOUTHERN I/i
CALIFORNIA ?1ARIRA DEL REY INFORMATION SCIENCES INST
W R SNARTOUT JUL 83 ISI/R5 83-3 F30602-81-K 8856

UNCLASSIFIED F/C 9/2 N

a',~ -. .,

Jog

1J.2

IL16

1.25 11" ".6

S. F

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A

A.°

..A

ISI Reprint Series

ISI/RS-83-3
July 1983

* University

of Southern

California

CZ1 William R. Swartout

K; .1 M-00Mlaw'w The GIST Behavior Explainer

C"L

k " . E ft

_ JUL 6 1983

.

INFORMATION

.
~ ~~SCIENCES

382-5/

• .~
9"_(

So
8

J U L
0 7 2 6 0 0 4.aA

, , _,, ., .,. .. :.-.-N..F-.,.R
MA. : TIO N - .. ,- . .. -. - . - ,.- . - -.-

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (when Data Entered)

DOCUMENTATION PAGE READ INSTRUCTIONS
REPORT DBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ISI/RS-83-3 / j-/,3o 7,36
4. TITLE (mid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Research Report

The GIST Behavior Explainer 6. PERFORMING ORG. REPORT MUMmER

7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(e)

William R. Swartout F30602 81 K 0056

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

USC/Information Sciences Institute AREA & WORK UNIT NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90291

il. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Systems Command, July 1983
Rome Air Development Center Is. NUMBER OF PAGES

Griffiss Air Force Base, NY 13441 17
14. MONITORING AGENCY NAME & ADDRESS(i dillerent from ControlIing Office) IS. SECURITY CLASS. (of this report)

Unclassified

ISa. DECLASSI FICATION/DOWNGRADINGSCHEDULE

I. DISTRIBUTION STATEMENT (of dole Report)

This document is approved for public release; distribution is unlimited.

17. OISTRIBUTION STATEMENT (of the obstroct entered in Block 20. if different firom Report)

.. o........

I$. SUPPLEMENTARY NOTES

This report is a reprint of an article that appears in the proceedings of the 1983 National Conference
on Artificial Intelligence, held in Washington, D. C., in August 1983. The conference is sponsored by

the American Association for Artificial Intelligence (AAAI).

19. KEY WORDS (Continue on reverse aide it necessary and Identify by block nuwbmer)

explanation, program specification, specification validation, symbolic evaluation

20. ABSTRACT (Continue on reverse side If necesary and identify by block mober)

(OVER)

DD I A 1473 EDITION OF I NOV 6S IS OBSOLETE UnclassifiedDD I AN 7S S/N 0I02-OI4- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When bets SNired)

..................-.- .,............ . . -.

Unclassified
SECURITY CLASSIPICATION OF THIS PA@ElMM DO* Ea--*eQ

20. ABSTRACT (continued)

)'One difficulty in understanding formal specifications is that there are often interactions between
pieces of the specification, never explicitly stated, that only become apparent when the specification
is analyzed or simulated. Symbolic evaluation has been proposed as a way of making such
interactions apparent, but symbolic evaluators often produce enormous execution traces that are
tedious and difficult to examine. This paper presents an automated system that employs a number of
heuristics to select the most interesting aspects of the trace for presentation. The system uses this
information to construct an English description of the trace. Due to the need for summarization and
proof reformulation, the direct-translation approach, which worked well in describing specifications
statically, is not suitable in this case. This paper describes the system and gives an example of its
output.

I

Unclassified
SE[CURITY CL-ASII

C A T IO N
OF THIS PAGEMORk~ DOMr IbstW00

*± t o

ISI Reprint Series.
ISI/RS-83-3

July 1983

University AA%

of Southern
California

William R. Swartout

-.. The GIST Behavior Explainer

.9--

INFORMATION
SCIENCES 238211INSTITUTE 213/2.-%T U 4676 Admiralty Way/Marina del Rey/California 90291-6695

This research Is supporled by the Air Force System Command, Rome Air Developfment Center under contract No. F30102 81 K 0066. VIeWs
and conclusons rntaill In ths report ae the author's and should not be interpreted as reprasentlng the official opinion or policy of RADC,
the U.S. Govemnient. or any preon or agency connected wit them.

-41

ISI Reprint Series

This report is one in a series of reprints of articles written by ISI research
staff and published in professional journals and conference proceedings. For
a complete list of ISI reports, write to

-.. Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291
USA

l .. ;.,.-. .-. ."... •...... . .,. - ,.

iii

Contents

1. Introd u ctio n 1

2 . A n E xa m p le 2

3. System Organization ...

4. Issues in Explaining the Trace ... 8
4.1 Selection and Summarization ... 8
4.2 Reform ulating Proofs .. 9
4.3 Referring Expressions ... 9

5. Future D irections .. 10

R eferences ... 11

i9

.1

iv

Acknowledgments

I wish to thank Robert Balzer, Don Cohen, Neil Goldman, Jack Mostow and Dave Wile for their
comments and discussions.

.4 - - . - . .+ + , + . . o . o o o +

1. Introduction

Regardless of the specification language used, formal program specifications can be tough to
understand. Yet, because a specification is frequently the means by which a customer communicates
his desires to a programmer, it is critical that both the customer and programmer be able to examine
and comprehend the specification. Our experience with Gist, a high-level specification language
being developed at ISI [1], has indicated that two of the major impediments to understandability are
the unfamiliar syntactic constructs of the language and non-local interactions between parts of the
specification. These interactions are often not apparent from a casual examination of the
specification.

In an earlier paper, the Gist paraphraser and English generator were described [6]. These address
the syntax problem by directly translating a Gist specification into English. We have found the
paraphraser to be useful in both clarifying specifications and revealing specification errors. We
expected that the English translation would be useful to people unfamiliar with Gist, because it would
make Gist specifications accessible, but we were surprised to discover that experienced Gist users
found it helpful for locating errors. The reason is that an English translation gives the specifier an
alternate view of his specification which highlights some aspects of the specification which are easily
overooked in the formal Gist notation. But the paraphraser deals only with the static aspects of a
specification. This paper deals with the more difficult problem of making non-local specification
interactions apparent by simulating the dynamic behavior implied by the specification.

Our approach has been to discover non-local interactions by using a symbolic evaluator,
developed by Don Cohen [2], to analyze a specification. As it evaluates the specification, the
symbolic evaluator creates a description of the relationships among pieces of the specification. It
discovers what sorts of behaviors the specification allows, and what is prohibited by constraints. A
symbolic evaluator does not require specfic inputs. Instead it develops a description of the range of
possible responses to a given range of inputs. Due to this characteristic, it is possible to test a
specification symbolically over a range of inputs that would require many test runs if specific inputs
were employed.

A specifier intee in the behavior of his specification may direct the evaluator to execute one of
the actions defined in the specification. As the evaluator executes the action, some apparently
possible execution paths may be eliminated due to constraints, and a more detailed description of the
inter-relationships within the specification is developed.

The symbolic evaluator produces an execution trace, which details everything discovered about
the specification during evaluation. The trace includes not only base facts directly implied by the
specification, but also any further implications that the evaluator may have derived from the base
facts using its theorem prover. In addition, the trace records the proof structures justifying the facts it
contains. Unfortunately, the trace is much too detailed and low-level to be readily understood by most
people. To overcome that difficulty, we have constructed a trace explainer that selects from the trace
tho aspects believed to be interesting or surprising to the user and uses that information to produce
an English summary.

There are a number of problems that make the simple direct-translation techniques (which worked
well for the Gist pa raser) unsuitable for the trace explainer. These problems Include:

Thill report i a reprnt of an articld ht appears in the proceedings of the 1963 National Conference on Artificial
It011gne, held In Wah*ngton, 0. C., In August i193. The conference Is sponsored by the Ameian Association for Artificial

-ialligs (AAA .

2 THE GIST BEHAVIOR EXPLAINER

Detail suppression. The trace is much too detailed to be described in Its entirety. The
trace explainer uses the structure of the specification and heuristics about what the user
is likely to find interesting or surprising in selecting what to describe.
Proof summarization and reformulation. The symbolic evaluator uses an augmented
resolution-based theorem prover in deriving the consequences of the specification.
While this approach is arguably attractive for its generality and simplicity, its arcane proof
structures could impose a hardship on the user. The trace explainer attempts to
reformulate resolution proof structures into more familiar and understandable ones.

- Referring expressions. With the Gist paraphraser, it was usually acceptable to use the
name given to an object in the specification as its referring expression in the English
paraphrase. The trace explainer cannot rely on this technique alone, since there are
objects in the trace that do not appear in the specification. Moreover, depending on
context, different referring phrases may be necessary even though the same object is
being referred to.

The next section presents an example specification and a machine-produced description of its
symbolic evaluation. Following that, the example will be used to illustrate the initial solutions we have
found for the problems listed above. The final section outlines some of the further work needed to
extend the capabilities of the explainer.

2. An Example

The example presented here is a simplified version of a specification for a postal package router
(see [3, 5]). The package router is designed to sort packages into bins corresponding to their
destinations. A package arrives at a location called the source and Its destination is read the. A
binary tree of switches and pipes connects the source with the output bins. It is the job of the
package router to et the switches so that the package winds up in the proper destination bin (see
Figure 2-1). The simplified specification contains just one switch and two bins. In addition, a location
called the input has been defined, which is where all boxes are originally located. The formal Gist
specification appears in Figure 2-2. it is not necessary to understand the formal notations, since an
English translation of the specification (produced by the paraphraser) is available: Figure 2-3 is the
English paraphrase of the specification's type structure and Figure 2.4 describes the possible actions
i this specification.

Having defined the type structure and actions. a specifier may wish to define some test sequences
of actions to see how the constraints of the specification Interact to limit the behavior of the
specification in ways that are not obvious from the static specification alone. In Figure 2-5, the user
has defined such a tot sequence. The user has also given preconditions to define the initial state
and the structure of the switching network and a postcondition to describe the final goal of the
system. Notice that in the action body, all operands are specified non-deterministcaly. For example,
the first action Invocation staft that a box is to be inserted, but it does not say which box. The Intent
of such a statement is that any box may be inserted, as long as no constraints are violated. This
non-deterministic reference is one of the freedoms allowed by the Gist specification language which
gives the specifier greater expressive power and prevents him from having to over-specify behaviors.
Becaus the user does not have to explicitly select parameters, he can see with just one test action
whether it is ever possible to achieve the postconditions using the particular sequence of action
Invocations given.

After the symbolic evaluator runs, the specifier can use the trace explainer to see an overview of
the results of symbolic execution (see Figure 2.6).

AN EXAMPLE 3

Npufrs

Figure 2-1: Package RouWe

4 THE GIST BEHAVIOR EXPLAINER

begin
type box(Location 1 location, Destination

bin);
type location(unique supertype of

<input() definition(inputl};
source(Source-outlet I switch)

defi n i t i on{Sou rce 1);
internal-location()unique supertype of

<switch
(Selected-outlet

I internal-location.
Outletl internal-location

:multiple)
definition{switchl);

bin() definition{binl, bin2)>>;
agent PackageRouter() where

action Insert~box]
definition update :Location of box

from inputi to Sourcel;
action Set[switch]

precondition -S :Location-switch
definition update :Selected-outlet

of switch to switch :Outlet;
action Move[box]

precondition box:Location-Sourcel or
box :Location-a switch

definition
if box :LocationeSource1

then update :Location of box
t,, to Sourcel :Source-outlet

else update :Location of box
to box :Location

:Selected-outlet;
action Test[]

precondition switchi :Outlet-binl
precondition switchi :Outlet-bin2
precondition Sourcel :Source-outlet-

switch1
precondition for all box II

box :Location-inputl
postcondition for all box II

box :Location-box :Destination
definition begin

Insert[a box];
Move[a box];
Insert[a box];
Nove[a box];
Set[a switch];
Nove a box];
Novela box]

end
end

end

Figure 2,2: Forma! GiW Specifiction for Packae Router

ISSUES IN EXPLAINING THE TRACE 5

There are boxes, locations and package-routers.

Each box has one location. Each box has one destination which is a bin.

Internal-locations, sources and inputs are locations.
Bins and switches are internal-locations.

Bin1 and bin2 are the only bins.
Switch1 is the only switch. The switch has one selected-outlet which is an
internal-location. The switch has multiple outlets which are internal-locations.

Sourcel is the only source. The source has one source-outlet which is a switch.
Input 1 is the only input.

Figure 2-3: Paraphrase of Package Router Type Structure

A package-router can Insert a box, set a switch, or move a box.
To insert a box:

Action: The box's location is updated from InputI to source1.
To set a switch:

Action: The switch's selected-outlet is updated to an outlet of the switch.
Preconditions:

The switch must not be the location of any box.
To move a box:

Action:
If: The box's location is source1,

Then: The box's location is updated to the source-outlet of sou rce 1.
Else: The box's location is updated to the selected-outlet of the switch
that is the box's location.

Preconditions:

Ether:
1. The box's location must be sourcel, or
2. The box's location must be a switch.

Figure 2-4: English Paraphrase of Possible Actions

- *Y..................

6 THE GIST BEHAVIOR EXPLAINER

To test:
Action:
1. Insert a box.
2. Move a box.
3. Insert a box.
4. Move a box.
5. Set a switch.
6. Move a box.
7. Move a box.

Preconditions:
For all boxes:

The box's location must be input1.

The source-outlet of source1 must be switch1.
An outlet of switch 1 must be bin2.
An outlet of switch 1 must be bin 1.

Postconditions:
For all boxes:

The box's location must be the box's destination.

Figure 2-5: English Paraphrase of a Test Action

1. A box, call It box1, is inserted.
Result: The new location of box 1 is source 1.
The explainer describes the action invocation as it was stated in the test case. It makes up the
name "box1" for this box so that it can be conveniently referred to later. The explainer then
describes the result of this action invocation.

2. A box is moved. The box must be boxI since

2.1 For all boxes except box1, the box's location is input1, and
2.2 The precondition of moving a box requires that either:

2.2.1 The box's location must be source I, or
2.2.2 The box's location must be a switch.

Result: The new location of box1 is switch1.

Something surprising has happened. In the test case, the action invocation was made with a
non-deterministic parameter, but the constraints of the specification force the selection of one
particular box, namely box 1. The explainer recognizes this sort of behavior as surprising and
describes not only the restriction on binding the parameter, but also the reasons behind it.

3. A box, call It box2, Is inserted. The box must not be box1 since

3.1 The location of box1 Is switchI, and
3.2 The location of the box to be inserted must be Input1 since the update in
inserting a box requires It.

Result: The new location of box2 Is sourcel1.
4. A box is moved. The box must be box1 since otherwise, at the start of step 5, the

location of box2 would be switch1 but the precondition of setting a switch requires
that the switch must not be the location of any box.
Result: The new location of box1 is the selected-outlet of switch 1. Switch1 is not the
location of any box.

Figure 2-6: Machine.Produced Description of
Symbolic Evaluation of Test
(continued on next page)

ISSUES IN EXPLAINING THE TRACE 7

At the start of step 4, box 1 is at the switch, and box2 is at source 1. It would appear that either one
could be moved in step 4 since both satisfy the preconditions of the move. However, if box2
moved, it would be impossible to execute the next step. So, as the explainer describes, the
non-local interaction with step 5 constrains the parameter binding.

5. A switch is set. The switch must be switch 1 since there are no other switches.
Result: The new selected-outlet of switch1 is an outlet, call It outlet1, of the switch.

6. A box is moved. The box must be box2 since the precondition of moving a box
requires that either:

6.1 The box's location must be sourcel, or
6.2 The box's location must be a switch.

Result: The new location of box2 Is switch1.
The proof that the box to be moved must be box2 is actually quite involved. The system currently
has no good way of summarizing proofs of this type, so it falls back on another heuristic. The
explainer examines the proof structure to find the statement in the specification that was used
specifically to constrain this choice and displays it. That is, rather than showing a proof, we just
display the parts of the specification that became relevant in constraining this behavior. This
heuristic seems to work well, and it provides the explainer with an "escape" so that it can convey
some information even if it can't reformulate the proof. Although it's usually not too difficult to
figure out how the specification statement constrains the behavior, we plan to add a facility to
allow the user to ask for further elaborations when he as trouble (see "Future Directions").

7. A box is moved. The box must be box2.
Result: The new location of box2 is outletl. For all boxes, the box's location is the
box's destination.
Since the justification for this step is the same as for the preceding, the explainer omits it.

Figure 2-6, continued

3. System Organization

Our facilities for making specifications more understandable are organized as shown in Figure 3-1.
Like the Gist paraphraser, the trace explainer employs an intermediate case frame representation
which is converted to English by a relatively straightforward English generator. The explainer Itself is
organized into individual explanation methods. There are two basic kinds of explanation methods.
Trace-based methods can describe particular situations that arise in the trace, such as an action
invocation or the justification of a fact found by the evaluator. The other kind, structuring methods,
organize the output of the trace-based methods into higher-level explanation structures. For
example, one such explanation method organizes two statements into a statement.reason
explanation structure of the form "P since 0" (see [8]).

There can be several explanation methods that describe the same obJect or behavior, but at
differing levels of detail or highlighting different aspects. It is up to the explainer to choose the moot
appropriate explanation method for a given situation. Currently, much of this decision-making is
handled procedurally. While this organization has been adequate to handle the sorts of specifications
shown here, a more sophisticated explanation planning mechanism will probably be needed to handle
lrger epecctions.

• - " -1 .*.*. - 5-- -.*;

_ 8 THE GIST BEHAVIOR EXPLAINER

'.

Figu re 3-1: System Overview

* .. 4. Issues in Explaining the Trace

The chief problems confronting us in explaining the trace have been 1) selecting and summarizing
the most appropriate information to present to the user from the large number of inferences produced
by the symbolic evaluator, 2) reformulating the theorem prover's proofs into a more understandable
form and 3) deling with changing referrng expressions.

4.1. Selection and Summarization

",'" Both the structure of the specification and heuristics about what the user wants to see are used to
-., guide the summarization of the trace. We mume that a particular specification has the structure it

*'-';_<.has because it models to some degree the way the specifier thought about the problem. Some of the
. explanation methods exploit this structure. Consider two explanation methods, both offering

descriptions of action invocations. One might use the structure of the specification and produce a
very summry description by just translating the invocation statement itself and stating the results of

! i';the invocation (similar to the example given above). Another explanation method could give a more
detailed description by actually describing the body of the action that was invoked as well. The

:- -. '. structure of the specification is a help in summarizing the trace, but it is not enough since many of the
fat the evaluator discovers (and the explainer must chose among) come from the interaction of•
several pleces of the sp)ecification.

To decide which interactions to present, the system must have some idea of what the user will be
interested in. For example, a customer unfamiliar with the specification might want an overview that

SPEC

EV.. *rO

PALAO-MEECO
U ** 4 - -- a -* 4.

.4-a ~ ~ *a~~ .~ ~ .* * *.TRACE

~ ~ . A . -. A~tZ___ * ~ ,*~ a'. ~ -,-.AIN.

ISSUES IN EXPLAINING THE TRACE 9

described the "main line" or normal execution path. On the other hand, the specifier who wrote the
specification would want to see the parts of the specification that appear to be incorrect because they
use the specification language in a surprising or unusual way. Our current implementation has
concentrated on presenting these surprising behaviors, rather than the normal case.

What, then, is surprising? We consider things such as superfluous code, the use of an overly
general language construct, or, worst of all, a specification which is inherently contradictory to be

surprising. More specifically, a conditional branch which must always follow the same path,
constraints which are never employed, and (as in the example presented here) the use of a non-
deterministic parameter that turns out to be deterministic are all surprising. The explainer's methods
recognize surprising situations and describe them to the user.

The kinds of surprises described above are language-dependent. Another kind of surprising
situation will arise as our work on incremental specification proceeds further. The incremental view
of specification states that detailed specifications do not appear all at once, but rather are gradually
refined layer by layer from more abstract specifications. Each succeeding layer is in a sense an
implementation of the one above it. Surprises will occur when the symbolic evaluator discovers that
one layer of a specification does not meet the goals set forth for it at a higher level.

4.2. Reformulating Proofs

While a resolution theorem prover may be attractive for many reasons, certainly the lucidity of its
proofs is not one of them. Our approach to this problem follows that suggested by Webber and Joshi
[7]: we attempt to reformulate the resolution proofs into ones that seem more natural. Some of the

recognizers we have developed find simple proof structures like modus ponens, while others find
more complicated structures such as proof by contradiction or a version of the pigeonhole principle.
For example, the pigeonhole rule examined the proof that the box moved in step 2 is boxi and
recognized that the proof has the form of successively eliminating possible candidates. Since one
reformulation may cover several resolution steps, recognizers like this help both by reducing the
amount of information that must be conveyed and by structuring it more appropriately.

At times the recognizers alone provide sufficient information to know how a proof should be
described. At other times it is necessary to consider how the proof description fits into the trace
description as a whole. For example, in describing step 4 in the example, a hypothetical construction
was used:

otherwise, at the start of step 5, the location of box2 would be switch 1

since the selection of the box to be moved was constrained by an event still in the future.

4.3. Referring Expressions

Because the symbolic evaluator dynamically creates symbolic instances of types as it reasons
about them, the trace explainer must be able to create names for such objects, even though they
never appear in the original specification. For example, Box1, mentioned in line 1 of the trace
description never appears in the specification. It is a symbolic instance created by the evaluator to
represent "the box inserted in step 1 ". While the evaluator creates a new instance at each action
invocation, the explainer is more parsimonious, creating new names only when equivalence to
previous names cannot be established. Thus, in step 2, no new name is required to describe the box
to be moved since it must be box1.

While names like box 1 or box2 are often sufficient for naming symbolic instances, they can at times
be more confusing than helpful. Consider line 3.2. The box to be inserted referred to there is in fact

10 THE GIST BEHAVIOR EXPLAINER

equivalent to box2. But substituting box2 in place of the box to be inserted results in a confusing
explanation. That's somewhat surprising, since one would expect that after naming an object in a
description one would be free to use that name to refer to it. The problem is that the order of the
description doe not correspond to the ordering of events. The reasoning about which box to insert
precedes its selection and naming, but in the description, things are reversed and the naming of
objects is sensitive to the order of events. The explainer therefore generates the phrase the box to be
inserted rather than box2.

5. Future Directions

Our current implementations of the symbolic evaluator and trace explainer produced the examples
contained in this pape. While our systems are still very much laboratory prototypes, we feel that they
have begun to demonstrate the utility of the techniques outlined here in debugging specifications.
Even so, we are aware that these techniques will not, by themselves, be sufficient for much larger
specifications. The four areas that seem to need attention are the symbolic evaluator, incremental
specification, allowing the user to ask follow-on questions about the summaries the explainer
provides, and a better mechanism for planning explanations.

The current symbolic evaluator is not goal driven. Rather than having a model of what might be
interesting to look for in a specification, the evaluator basically does forward-chaining reasoning until
it reaches some heuristic cut-offs. In the process, it generates interesting as well as uninteresting
results, which the explainer must sift through. While this works reasonably well for the small
specifications we have been working with, larger specifications could prove overwhelming. One
solution may be to make the symbolic evaluator more goal-directed. By giving it, at least at a high
level, a model of what might be interesting, it could be more directed in its search. After narrowing
the search using goals, the evaluator could then switch to forward-chaining to more completely
examine the smaller problem space. Such an approach would benefit both the evaluator because it
would run faster, and the explainer, because the goal structure would aid substantially in generating
explanations.

The notion of incremental specification has already been mentioned above. Aside from indicating
surprising behaviors, incremental specification could also improve the performance of the evaluator
through higher level abstractions [4], since a few reasoning steps at the high level could replace many
low level inference steps.

The current implementation of the explainer makes no provision for the user to ask further
questions about the descriptions it produces. However, such a capability is required because the
descriptions are produced heuristically. The system may assume that the user will readily understand
something that actually requires further description. For the near future, we do not envision allowing
the user to ask questions in natural language, but instead, we will let him point at the pieces of the
description he did not understand (using a mouse or other pointing device) and ask for further
dewption.

Finally, we are currently implementing an explanation planning mechanism that will allow us to
represent plans for presenting information. This mechanism will allow us to describe goals and the
capabilities of plans along multi-dimensional scales. The dimensions will be either categorical or
ordinal. For example, some of the kinds of dimensions that seem to be important in explanation are:
the type of object to be dscribed, the form the description is to take, degree of verbosity, and level of
detall. The planning mechanism will support matching goals and methods represented in this space,
and will provide a mechanism for selecting the most appropriate method when only a partial match
can be found.

C C ~ ~ ~ ~ ----- -79 -

11

References

1. Balzer, R., Goldman. N. & Wile. D. Operational specification as the basis for rapid prototyping.
Proceedings of the Second Software Engineering Symposium: Workshop on Rapid Prototyping. ACM
SIGSOFT, April, 1982.

2. Cohen, D. Symbolic execution of the Gist specification language. Proceedings of the Eighth
IJCAI, IJCAI, 1983.

3. Hommel, G. (ed.). Vergleich verschiedener Spezifikationsverfahren am Beispiel einer
Paketverteilanlage. Kemforachungazentrum Karlsruhe GmbH, August, 1980. PDV-Report, KfK-PDV
186, Part 1

4. Sussman, G. SLICES: at the boundary between analysis and synthesis. Tech. Rept. Al Memo 433,
MIT, July, 1977.

5. Swartout, W. and Balzer, R. "On the Inevitable Intertwining of Specification and Implementation."
Communications of the ACM 25, 7 (July 1982), 438:440.

6. Swartout, W. Gist English Generator. Proceedings of AAAI-82, AAAI, 1982.

7. Webber and Joshi. Taking the initiative in natural language data base interactions: justifying why.
University of Pennsylvania, 1982.

8. Weiner, J. "BLAH, A system which explains its reasoning." Artificial Intelligence 15 (1980), 19-48.

- S.

